
To date, it’s not been staggeringly successful. The proposition isn’t that appealing, at least as far as homeowners are concerned. You shell out about two or three times as much as your would for a gas boiler, and you get some of your electricity requirement thrown in with your hot water. Whilst large and medium sized CHP plants are doing rather well, down at the micro level things have come becalmed, especially as the only one commercially available, the gas-fired Whispergen, pictured here, has temporarily ceased production.
Thanks to the boys over at Carbon Limited who have flagged up a report from The Carbon Trust on the micro CHP. It has drawn some interesting conclusions in comparing the performance of 87 Micro CHP units with 27 condensing boilers over a four-year period.
• Key finding is that in order to operate effectively, micro CHP has to be in a situation where it can run for long periods uninterrupted. If the system cycles on and off frequently, it ends up using more electricity than it generates.
• Essentially this means that they are suitable for sites such as residential care homes and leisure centres, where there is a reasonably large and consistent hot water demand, In these instances, there can be significant savings — the report quotes 15% to 20% — relative to using condensing boilers
• But in housing, micro-CHP advantages are marginal at best. The demand has to be significant to make any savings, so it may be a runner if the house is very large or very old and uninsulated. Think listed manor houses – that sort of thing. The cut-off point identified by the report is a heat demand of more than 20,000kWh/annum, which would apply to almost all 20th century housing over 200m2 internal floor area (say five bedrooms).
• One of the main issues with today’s generation of micro CHP is that they only produce 1 unit of electrical power for every 10 units of hot water. This doesn’t match general domestic use, which is more like 1:3. Not until new technology kicks in (fuel cells anyone?) will a micro CHP plant start producing a better balance.
• Having said that, there is a good match time-wise. Peak electricity and hot water demand tend to occur at the same time (think dark winter nights), unlike technologies such as roof mounted PV arrays. So there is every chance that the electricity you produce, you will actually consume rather than having to export it to the grid at knockdown prices.
• The report also has some factoids about condensing boilers. It concludes that they achieve efficiencies about 5% less than their SEDBUK rating would suggest. And also that the electrical controls use large amounts of power to run the pumps, fans and control systems. Some designs are worse than others and the difference is significant. In some instances, the electrical consumption associated with condensing boilers may account for 15% of the household electricity bill.